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METHOD OF FINITE ELEMENTS FOR SOLVING SOME 

HEAT-CONDUCTION PROBLEMS 

Jana Budacova UDC 536.24.02 

Heat-conductlon problems are investigated with the aid of a new variational method, 
namely, the method of finite elements (MFE). 

Heat processes in constructions or in mechanical equipment with high-temperature gradi- 
ents are at present studied in a number of investigations. For a theoretical solution of the 
problems thus arising one can employ, in principle, either analytic or numerical methods. 
The classical analytic methods, including the methods based on integral transformations, can 
produce satisfactory solutions for simple physical models; their use, however, in involved 
problems, in practice, is rather doubtful. The numerical methods employed until recently were 
almost exclusively based on the method of finite differences. Variational methods have at 
present found wide application (in particular, the MFE), since the use of the latter results 
in matrix equations suitable for processing on digital computers. 

The main concept of the MFE consists in subdividing the entire solution domain into a 
set of a finite number of elements, the links between adjacent elements being provided in a 
finite number only of the so-called points of contact. The continuous solution of the origi- 
nai-problem in the old domain (for heat conduction the latter is the temperature field) is 
replaced by a piecewise polynomial one with values specified in advance at the nodes of the 
complex. Since these values are the same for adjacent elements therefore continuity of the 
solution is attained in the entire domain under investigation. Some of the main advantages 
of the MFE are the ease of satisfying any boundary conditions for bodies of quite different 
shapes including holes and complicated boundaries and also that any inhomogeneities or aniso- 
tropycan be taken into account, and finally that one can solve nonlinear problems with the 
aid of various iteration procedures. 

The unsteady heat-conduction equation can be written as follows: 
N 

t, " t, + t, o -o, (1) 

where 0 = ~e/~t with the boundary and initial conditions 

oo + ~ (x, t, o ) ( o -  %)IA~ = 0, 0 (X, 0) = 0 ~ (X), -~n (2)  

0IA0--  OA (x, t), O0 -~n + qp (x, t, O)lAq = o, 

where A = A 0UAqUA a is the boundary of the domain a under investigation; B0/~n is the nor- 
mal derivative to the surface and a is the heat-emission coefficient. Of the variational 
methods employed in heat problems the Galerkin method is the onemost often used [i]. One 
considers the basic space of the functions @ such that 

~6H and; r o = O, 
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Fig. i. Grid for evaluationof the temperature field 
of a membrane wall: D2 = 35 mm; Sp = 5 mm; S = 
6 mm. 

where H is the Hi!bert space with the scalar product 

(u,  ~ )  =: S u~dx. 

Equation (i) is now multiplied by the function ~ and integrated over the domain ~. 
using Green's theorem one finds 

pcOcpdV + ~ ~iS ~7 i 
~ i , i= l  A cz n 

If one introduces the notation 

Q~dV + ; o~Om~dA + ; q~ 

AO: A q 

one can write (3) as 

N 

n i,]-~l Ox i 3xj Acc 

AO~ A q 

By 

(3) 

(4) 

(pc6, ~) + k (o, ~) = p (~). (5). 

A function of e which satisfies the initial condition and the integral identity (5) is 
a weak solution of the problem (I) and (2). 

The Galerkin method suitable for the heat-conduction problem can be formulated as fol- 
lows: The approximate solution O h is sought in the form 

G = Xa~ (t) ~ (xL (6) 

1239 



The time-continuous Galerkin solution is found from a discreteanalog of Eq. (5). If 
(6) is inserted into (5) then the basic MFE equation is obtained for the solution of the heat 
problems; its matrix form is as follows: 

[Cl{a} + [~l {a} = {F}, (7) 

where the entries of the matrices [C], [H], and of the vector {F} are given by 

c u = (tw~i, ~j), h~j = k(%, %), f~ = P(+3.  (8) 

If the coefficients ~, O, c, a of the heat-conduction equation, the internal heat sources, 
and the given heat flux on the boundary of the domain under investigation depend on the tem- 
perature, then the matrices H and C as well as the vector F are also functions of the temper- 
ature, and (7) represents a system of nonlinear differential equations. The linearization 
method is used on each time interval At. It was proposed by Comini in [2] that the so-called 
three-layer scheme be used (previously introduced by Lels in [3]). If it is assumed that the 
temperature changes linearly on the small interval (t -- At, t + At), then Eq. (7) can be ap- 
proximated as follows: 

[C (t)] ({a(t + At)} - -  {a (t - -  At)}) ~ [H (t)l ({a (t + At)} + {a (t)} + a (t - -  At)}) = {F (t)}, (9) 
2At 3 

and after algebraic transformation one obtains 

3 [C(t)l)la(t~At)} = 3 [C(t)l ~.', {a(t--At)} 3 {F (t)}-- [H (t)l ({a (t)} + {a (t At)}). (10)  
([H (t)l ~- 2At 2A~-t- 

In the system of linear algebraic equations thus obtained the matrices of the system and the 
vector on the right must be reevaluated at each temporal step. 

The problem of radiative heat transfer can be given as another example which results in 
a linear system of equations. The heat flux at the boundary can be described by the condi- 

tion 
00 

+ ~(e ~ o~)IA z - 0 (ll) 
On 

where ~ = 5.67-10 -8 W-m-2,~ -~ is the Stefan--Boltzmann constant and e is "the mutual radia- 
tion coefficient." If this condition is incorporated in Eq. (3) then a nonlinear system of 

equations 

[C]{a} + [Hl{a} + [ZI {#} = {F} (12) 

is obtained, whose numerical solution is very difficult to find if the system is large. It 
was proved that it is convenient to represent the condition (II) in the form 

0 0 . +  ~ ( 0 - - 0 z ) h  ~ = 0, (13)  
On 

where 

= sz (o + o,) (02 + o~ ) 

is similar in form to the third boundary condition in (2). The "constant" $ is determined 
in the interval (t, t + At) with the aid of the temperatures evaluated at the instant t; by 
solving the system of equations (7) the temperatures are determined at the nodes of the grid 
at the instant t + At. To improve the accuracy, the computation can be repeated several 
times, each time with a corrected value of B; the results, however, differ so little that it 
is enough to repeat the computation only once and thus shorten the machine time. 

In practice, one also has to solve numerically the system of equations (7), which becomes 
a system of ordinary differential equations after the above-described changes have been car- 
ried out. To solve the latter, explicit methods can be used. However, they have many dis- 
advantages sincethe matrix [C] is not diagonal. The majority of the classical approxima- 
tion methods for solving ordinary differential equations result in relatively stable schemes. 
To be able to solve the system (7) with any temporal step, an absolutely stable method is nec- 
essary. A single step procedure is adopted whose scheme for solving the differential equa- 
tions ~ = g(a, t), a(0) = a ~ is given by 

a ~ - - a  ~ = At [(1 - -  ~) g,,+l + ~gn]. (14) 
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Fig. 2. Isotherms obtained from com- 
putations of temperatures at grid 
nodes. 0 m = 367~ ~ = 0.043.105 W. 
m-2oOK -~" 

A necessary and sufficient condition for the scheme (14) to be stable is @-~< 1/2. 
1/2 the method is often referred to as the trapezoid method; by applying it to Eq. 
obtains the well-known Crank-- Nichols procedure 

For ~ = 

(7) one 

, 1 ( [ C ] _ _ I _ A I [ H ] ) { a ( t _  ([C] ~-~ At[H] ) {a(O} = 2 

i (15) 
- -  At)} + ~- At ({F(t)} + { F ( t  - -  At)}). 

Another approach to find a solution is to use the space-- time elements. The Galerkin 
method can be used again in Eq. (7) since the vectors {a} and {F} can be approximated in the 
interval At by values taken at several selected points of this interval. The error in the 
results can then be reduced by using a high-degree interpolation method. 

To provide an illustration for the above, the temperature field is determined of a s~c- 
tion of a tubular system where inside the tube the heat of forced convection is emitted, and 
also a radiation flux falls on part of its outside. The computations were carried out using 
the program ROTER on the EC 1030 computer compiled for solving a two-dimensional MFE problem 
with a selected triangular element with three nodes. The temperature curve was approximated 
by a linear polynomial on each element. In this case the effect of radiation was replaced 
by a given heat flux qp = 0.1977.106 W-m -2 and its value along the surface was expressed by 
means of a product of the angular coefficient of radiation and the heat flux qp. In Fig. 1 
the grid is shown used for the computation as well as the input parameters. From the com- 
puted temperature at the nodes of the grid the isotherms were constructed (Fig. 2) which pro- 
vide a clear map of temperature distribution in the domain. In the lower part of the tube 
the temperature grows slowly (from 365 ~ to 3700C) since the outside is thermally insulated. 

On the basis of the carried-out analysis and the above given example one can draw the 
conclusion that the application of the MFE method is useful for solving stationary or non- 
stationary heat-conduction problems in bodies of virtually any geometrical form in the case 
of realistic boundary and initial conditions and when the thermophysical parameters of the 
bodies can depend on temperature or other parameters. 
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NOTATION 

%, temperature; em, ambient temperature; Q, inner source intensity; e A, prescribed tem- 
perature on the boundary; X, coefficient of thermal conductivity; a, heat-transfer coeffi- 
cient; p, density; c, heat capacity; qp, prescribed heat flux; q, Stefan--Boltzmann constant; 
~,mutual radiation coefficient. 
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